Sparse Component Analysis for Blind Source Separation with Less Sensors than Sources
نویسندگان
چکیده
A sparse decomposition approach of observed data matrix is presented in this paper and the approach is then used in blind source separation with less sensors than sources. First, sparse representation (factorization) of a data matrix is discussed. For a given basis matrix, there exist infinite coefficient matrices (solutions) generally such that the data matrix can be represented by the product of the basis matrix and coefficient matrices. However, the sparse solution with minimum 1-norm is unique with probability one, and can be obtained by using linear programming algorithm. The basis matrix can be estimated using gradient type algorithm or Kmeans clustering algorithm. Next, blind source separation is discussed based on sparse factorization approach. The blind separation technique includes two steps, one is to estimate a mixing matrix (basis matrix in the sparse representation), the second is to estimate sources (coefficient matrix). If the sources are sufficiently sparse, blind separation can be carried out directly in the time domain. Otherwise, blind separation can be implemented in time-frequency domain after applying wavelet packet transformation preprocessing to the observed mixtures. Three simulation examples are presented to illustrate the proposed algorithms and reveal algorithms performance. Finally, concluding remarks review the developed approach and state the open problems for further studying.
منابع مشابه
Sparse Component Analysis by Improved Basis Pursuit Method
We give conditions under which we can solve precisely the Blind Source Separation problem (BSS) in the underdetermined case (less sensors than sources) uniquely, up to permutation and scaling of sources. Under this conditions, which include information about sparseness of the sources (and hence we call the problem sparse component analysis (SCA)), we can 1) identify the mixing matrix (up to sca...
متن کاملSparse Source Separation with Unknown Source Number
Sparse Blind Source Separation (BSS) problems have recently received some attention. And some of them have been proposed for the unknown number of sources. However, they only consider the overdetermined case (i.e. with more sources than sensors). In the practical BSS, there are not prior assumptions on the number of sources. In this paper, we use cluster and Principal Component Analysis (PCA) t...
متن کاملNon-Negative Matrix Factorization and Its Application in Blind Sparse Source Separation with Less Sensors Than Sources
Non-Negative Matrix Factorization (NMF) implies that a given nonnegative matrix is represented by a product of two non-negative matrices. In this paper, a factorization condition (consistent condition) on basis matrix is proposed firstly. For a given consistent basis matrix, although there exist infinite solutions (factorizations) generally, the sparse solution is unique with probability one, w...
متن کاملA sparse Mixture of Gaussians model for blind separation of more source than sensors
We explore the use of mixtures of Gaussians for noisy and overcomplete ICA. In particular we introduce a simplifying approximation for the case of sparse sources that avoids the exponential growth of mixture components and results in a modified clustering algorithm. This can be extended to also deal with complex data which is important for audio applications. Experiments show that the algorithm...
متن کاملIdentifiability Conditions and Subspace Clustering in Sparse BSS
We give general identifiability conditions on the source matrix in Blind Signal Separation problem. They refine some previously known ones. We develop a subspace clustering algorithm, which is a generalization of the k-plane clustering algorithm, and is suitable for separation of sparse mixtures with bigger sparsity (i.e. when the number of the sensors is bigger at least by 2 than the number of...
متن کامل